The structure of a collisionless shock affects ion motion in the shock front and is affected by the formed ion distribution. In high-Mach-number shocks, a significant fraction of incident ions are reflected by the macroscopic electric and magnetic fields in the shock front. Ions are non-specularly reflected by the combined electric deceleration and magnetic deflection. Here, a first analytical description of the non-specular reflection is presented. The contribution of the increasing magnetic field is evaluated and shown to enhance reflection. The distribution of non-specularly reflected ions ahead of the ramp is calculated and their velocities at the re-entry to the shock are found numerically. Dependence on the angle between the shock normal and the upstream magnetic field vector is illustrated.
Full Article:
Sharma, P. (SHARP) and Gedalin, M. (SHARP) (2023). Non-specular ion reflection at quasiperpendicular collisionless shock front. Journal of Plasma Physics, 89(5), doi: 10.1017/S002237782300096X
License: CC BY 4.0