New Publication: “Jitter Radiation as an Alternative Mechanism for the Nonthermal X-Ray Emission of Cassiopeia A” by Emanuele Greco et al.

Synchrotron radiation from relativistic electrons is usually invoked as responsible for the nonthermal emission observed in supernova remnants. Diffusive shock acceleration is the most popular mechanism to explain the process of particles acceleration and within its framework a crucial role is played by the turbulent magnetic field. However, the standard models commonly used to fit X-ray synchrotron emission do not take into account the effects of turbulence in the shape of the resulting photon spectra. An alternative mechanism that properly includes such effects is the jitter radiation, which provides for an additional power law beyond the classical synchrotron cutoff. We fitted a jitter spectral model to Chandra, NuSTAR, SWIFT/BAT, and INTEGRAL/ISGRI spectra of Cassiopeia A (Cas A) and found that it describes the X-ray soft-to-hard range better than any of the standard cutoff models. The jitter radiation allows us to measure the index of the magnetic turbulence spectrum νB and the minimum scale of the turbulence ${\lambda }_{\min }$ across several regions of Cas A, with best-fit values νB ∼ 2 − 2.4 and ${\lambda }_{\min }\lesssim 100$ km.

Chandra and NuSTAR exposure/vignetting-corrected images of Cas A. Leftmost panel: Chandra/ACIS-S count-rate image in the 0.5–8 keV band with a pixel size of 1” and a square root scale. Other panels: exposure/vignetting-corrected and mosaicked NuSTAR images of Cas A in various energy bands, reported on the images in units of keV, with a square root scale.

Full Article:
Greco, E. (SHARP), Vink, J. (SHARP), Ellien, A. (SHARP) and Ferrigno, C. (2023). Jitter Radiation as an Alternative Mechanism for the Nonthermal X-Ray Emission of Cassiopeia A. The Astrophysical Journal, 956, doi: 10.3847/1538-4357/acf567

License: CC BY 4.0

New Publication: “Electron heating in shocks: Statistics and comparison” by Michael Gedalin et al.

Supernova remnant (SNR) shocks are the highest Mach number non-relativistic shocks in electron-ion plasmas. These shocks are the most efficient particle accelerators in space. SNR shock parameters are inferred from measurements of electromagnetic radiation from heated and accelerated particles. Temperature of the shock heated electrons is one of the most important parameters in supernova remnant shocks. Knowledge of the downstream electron-to-ion temperature ratio or of the ratio of the downstream electron temperature to the incident ion energy is crucial for understanding physics of the very high-Mach number SNR shocks. Heliospheric shocks have substantially lower Mach numbers than SNR shocks but can be extensively studied in in situ observations with further extrapolation of the findings to higher Mach numbers. Magnetospheric Multiscale mission observations of the Earth bow shock are used to analyze dependence of the electron heating on the shock Mach number. It is found that the ratio of the downstream electron temperature to the incident ion energy decreases with the increase of the Mach number. At high Mach numbers this ratio and stabilizes at about 2.5%. The electron-to-ion temperature ratio stabilizes at about 10%. The peak electron temperature occurs at the overshoot maximum, further downstream electrons cool down. The mean ratio of the 4.5 s averages of the downstream and maximum electron temperatures is 0.85. Electron heating does not follow the thermodynamic adiabatic law. The heating and cooling behavior implies that the energy is provided by the overall cross-shock potential while small-scale electric fields rapidly isotropize the electron distribution.

Examples of two shock crossings included in the selection for the analysis. The shock crossing is zero time. The magnetic field magnitude (black line) is normalized on the maximum magnetic field inside the window of ±1,200 s around the crossing. The electron temperature is normalized on the maximum temperature in the same window

Full Article:
Gedalin, M. (SHARP), Golan, M., Vink, J. (SHARP), Ganushkina, N. (SHARP), & Balikhin, M. (2023). Electron heating in shocks: Statistics and comparison. Journal of Geophysical Research: Space Physics, 128, doi: 10.1029/2023JA0316

License: CC BY-NC-ND 4.0

SHARP Summer School on Collisionless Shocks in Space, August 21-25, 2023

In August, the SHARP consortium organised a summer school on collisionless shocks in space in Levi, Finland. In total 23 students from more than 10 different countries attended the school. The lectures covered all research areas of the SHARP project, including basic theory on collisionless shocks, heliospheric shocks and astrophysical shocks. The students also attended exercise sessions where they learned about data analysis of shocks and the computation of basic shock parameters.

The program of the summer school can be found here.

SHARP summer school participants

New Publication: “Evidence for Thermal X-Ray Emission from the Synchrotron-dominated Shocks in Tycho’s Supernova Remnant” by Amaël Ellien et al.

Young supernova remnant (SNR) shocks are believed to be the main sites of galactic cosmic-ray production, showing X-ray synchrotron-dominated spectra in the vicinity of their shock. While a faint thermal signature left by the shocked interstellar medium (ISM) should also be found in the spectra, proofs for such an emission in Tycho’s SNR have been lacking. We perform an extended statistical analysis of the X-ray spectra of five regions behind the blast wave of Tycho’s SNR using Chandra archival data. We use Bayesian inference to perform extended parameter space exploration and sample the posterior distributions of a variety of models of interest. According to Bayes factors, spectra of all five regions of analysis are best described by composite three-component models taking nonthermal emission, ejecta emission, and shocked ISM emission into account. The shocked ISM stands out the most in the northern limb of the SNR. We performed an extended analysis of the northern limb and show that the measured synchrotron cutoff energy is not well constrained in the presence of a shocked ISM component. Such results cannot currently be further investigated by analyzing emission lines in the 0.5–1 keV range, because of the low Chandra spectral resolution in this band. We show with simulated spectra that Athena X-ray Integral Field Unit future performances will be crucial to address this point.

Left: broadband Chandra image of Tycho’s SNR. Right: schematic view of Tycho’s SNR. The five black boxes are the regions over which our shock spectra were extracted and analyzed. The contours are drawn from the contrast image computed from the normalized 1.7–1.95 keV and 4.0–6.0 keV images. Note that the contrast image has been smoothed with a 1σ Gaussian kernel before drawing the contours.

Full Article:
Ellien, A. (SHARP), Greco, E. (SHARP) and Vink, J. (SHARP) (2023). Evidence for Thermal X-Ray Emission from the Synchrotron-dominated Shocks in Tycho’s Supernova Remnant. The Astrophysical Journal, 951, doi: 10.3847/1538-4357/accc85

License: CC BY 4.0

New Publication: “Scattering of Ions at a Rippled Shock” by Michael Gedalin et al.

In a collisionless shock the energy of the directed flow is converted to heating and acceleration of charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is important. With the increase of the Mach number, rippling develops, which is expected to affect ion dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating along the shock front. It is shown that rippling results in the distributions, which are substantially broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate backstreaming ions, which are absent in the planar stationary case.

The two-dimensional surface of the magnetic field magnitude for the rippled shock. Y is in the direction or rippling propagation. The global shock normal is along x. The local shock normal is determined by the steepest gradient of the magnetic field magnitude, depends on Y, and differs from the global normal. The maximum overshoot magnetic field also depends on Y.

Full Article:
Gedalin, M. (SHARP), Pogorelov, N. V. and Roytershteyn, V. (2023). Scattering of Ions at a Rippled Shock. The Astrophysical Journal, 951, doi: 10.3847/1538-4357/acd63c

License: CC BY 4.0

New Publication: “Role of the overshoot in the shock self-organization” by Michael Gedalin et al.

A collisionless shock is a self-organized structure where fields and particle distributions are mutually adjusted to ensure a stable mass, momentum and energy transfer from the upstream to the downstream region. This adjustment may involve rippling, reformation or whatever else is needed to maintain the shock. The fields inside the shock front are produced due to the motion of charged particles, which is in turn governed by the fields. The overshoot arises due to the deceleration of the ion flow by the increasing magnetic field, so that the drop of the dynamic pressure should be compensated by the increase of the magnetic pressure. The role of the overshoot is to regulate ion reflection, thus properly adjusting the downstream ion temperature and kinetic pressure and also speeding up the collisionless relaxation and reducing the anisotropy of the eventually gyrotropized distributions.

The magnetic field magnitude, normalized to the upstream magnetic field magnitude (black curve) and the reduced ion distribution function.

Full Article:
Gedalin, M. (SHARP), Dimmock, A. (SHARP), Russell, C. (SHARP), Pogorelov, N., & Roytershteyn, V. (2023). Role of the overshoot in the shock self-organization. Journal of Plasma Physics, 89(2), doi: 10.1017/S0022377823000090

License: CC BY 4.0

New Publication: “X-Ray Polarimetry Reveals the Magnetic-field Topology on Sub-parsec Scales in Tycho’s Supernova Remnant” by Riccardo Ferrazzoli et al.

Supernova remnants are commonly considered to produce most of the Galactic cosmic rays via diffusive shock acceleration. However, many questions regarding the physical conditions at shock fronts, such as the magnetic-field morphology close to the particle acceleration sites, remain open. Here we report the detection of a localized polarization signal from some synchrotron X-ray emitting regions of Tycho’s supernova remnant made by the Imaging X-ray Polarimetry Explorer. The derived degree of polarization of the X-ray synchrotron emission is 9% ± 2% averaged over the whole remnant, and 12% ± 2% at the rim, higher than the value of polarization of 7%–8% observed in the radio band. In the west region, the degree of polarization is 23% ± 4%. The degree of X-ray polarization in Tycho is higher than for Cassiopeia A, suggesting a more ordered magnetic field or a larger maximum turbulence scale. The measured tangential direction of polarization corresponds to the radial magnetic field, and is consistent with that observed in the radio band. These results are compatible with the expectation of turbulence produced by an anisotropic cascade of a radial magnetic field near the shock, where we derive a magnetic-field amplification factor of 3.4 ± 0.3. The fact that this value is significantly smaller than those expected from acceleration models is indicative of highly anisotropic magnetic-field turbulence, or that the emitting electrons either favor regions of lower turbulence, or accumulate close to where the orientation of the magnetic field is preferentially radially oriented due to hydrodynamical instabilities.

Polarization map in the 3–6 keV energy band with a 60” pixel size. Only the pixels with significance higher than 1σ are shown. The blue bars represent the direction of the polarization (that is, the direction of the electric vector polarization angle) and their length is proportional to the degree of polarization. The thicker cyan bars mark the pixels with significance higher than 2σ. The orientation of the magnetic field is perpendicular to the direction of the polarization. Superimposed in green are the 4–6 keV Chandra contours.

Full Article:
Ferrazzoli, R., Slane, P., Prokhorov, D. (SHARP), Zhou, P., Vink, J. (SHARP), et al. (2023). X-Ray Polarimetry Reveals the Magnetic-field Topology on Sub-parsec Scales in Tycho’s Supernova Remnant. The Astrophysical Journal, 945, doi: 10.3847/1538-4357/acb496

License: CC BY 4.0

Collisionless shock meeting

As part of the SHARP project, the Swedish Institute for Space Physics (IRF) organised a Collisionless shock meeting on January 26-27th in Uppsala, Sweden. The meeting consisted of sessions on interplanetary shocks, astrophysical shocks, foreshock/sheath plasma regions and planetary bow shocks. The program is available here.

New Publication: “An update on Fermi-LAT transients in the Galactic plane, including strong activity of Cygnus X-3 in mid-2020” by Dmitry Prokhorov et al.

We present a search for Galactic transient γ-ray sources using 13 yr of the Fermi Large Area Telescope data. The search is based on a recently developed variable-size sliding-time-window (VSSTW) analysis and aimed at studying variable γ-ray emission from binary systems, including novae, γ-ray binaries, and microquasars. Compared to the previous search for transient sources at random positions in the sky with 11.5 yr of data, we included γ-rays with energies down to 500 MeV, increased a number of test positions, and extended the data set by adding data collected between 2020 February and 2021 July. These refinements allowed us to detect additional three novae, V1324 Sco, V5855 Sgr, V357 Mus, and one γ-ray binary, PSR B1259-63, with the VSSTW method. Our search revealed a γ-ray flare from the microquasar, Cygnus X-3, occurred in 2020. When applied to equal quarters of the data, the analysis provided us with detections of repeating signals from PSR B1259-63, LS I +61°303, PSR J2021+4026, and Cygnus X-3. While the Cygnus X-3 was bright in γ-rays in mid-2020, it was in a soft X-ray state and we found that its γ-ray emission was modulated with the orbital period.

The significance map of γ-ray transient emission in σ showing the microquasar Cygnus X-3, the nova V407 Cyg, and the pulsar PSR J2021+4026.

Full Article:
Prokhorov, D. A. (SHARP), Moraghan, A. (2022). An update on Fermi-LAT transients in the Galactic plane, including strong activity of Cygnus X-3 in mid-2020. Monthly Notices of the Royal Astronomical Society, 519, doi: 10.1093/mnras/stac3453

License: CC BY 4.0

New Publication: “Mirror Mode Storms Observed by Solar Orbiter” by Andrew Dimmock et al.

Mirror modes (MMs) are ubiquitous in space plasma and grow from pressure anisotropy. Together with other instabilities, they play a fundamental role in constraining the free energy contained in the plasma. This study focuses on MMs observed in the solar wind by Solar Orbiter (SolO) for heliocentric distances between 0.5 and 1 AU. Typically, MMs have timescales from several to tens of seconds and are considered quasi-MHD structures. In the solar wind, they also generally appear as isolated structures. However, in certain conditions, prolonged and bursty trains of higher frequency MMs are measured, which have been labeled previously as MM storms. At present, only a handful of existing studies have focused on MM storms, meaning that many open questions remain. In this study, SolO has been used to investigate several key aspects of MM storms: their dependence on heliocentric distance, association with local plasma properties, temporal/spatial scale, amplitude, and connections with larger-scale solar wind transients. The main results are that MM storms often approach local ion scales and can no longer be treated as quasi-magnetohydrodynamic, thus breaking the commonly used long-wavelength assumption. They are typically observed close to current sheets and downstream of interplanetary shocks. The events were observed during slow solar wind speeds and there was a tendency for higher occurrence closer to the Sun. The occurrence is low, so they do not play a fundamental role in regulating ambient solar wind but may play a larger role inside transients.

Mirror modes (MMs) observed on 19 July 2021. Plotted in panels (a and b) are |B| and Brtn, a wavelet spectrogram of B is shown in panel (c), and the ellipticity of the magnetic field is shown in panel (d). Panels (e–k) depict Ni, |Vi|, Ti, differential energy flux, βi, and RMM, respectively. Regions that are highlighted in yellow correspond to localized reductions in ellipticity and the manifestation of MM structures since they should have zero ellipticity.

Full Article:
Dimmock, A. P. (SHARP), Yordanova, E., Graham, D. B. (SHARP), Khotyaintsev, Y. V. (SHARP), Blanco-Cano, X., Kajdič, P., et al. (2022). Mirror mode storms observed by Solar Orbiter. Journal of Geophysical Research: Space Physics, 127, doi: 10.1029/2022JA030754

License: CC BY 4.0