

An MMS bow shock database using machine learning: EU H2020 SHARP project

A. P. Dimmock¹, Yu. Khotyaintsev¹, <u>A. Lalti¹</u>, D. Graham¹, <u>V. Olshevsky</u>^{2,3}, A. Johlander¹, M. Gedalin⁴, N. Ganuskina^{5,6}, C. T. Russell⁷

¹ IRF, Uppsala, Sweden, ² KTH, Stockholm, Sweden, ³ Main Astronomical Observatory, Kiev, Ukraine ⁴ Ben-Gurion University, Israel, ⁵ University of Michigan, USA, ⁶ FMI, Finland, ⁷ UCLA, USA

VGEM 2021

SHARP (SHocks: structure, AcceleRation, dissiPation) project is funded by the European Union's Horizon 2020 research and innovation programme. It started on January 1st, 2021 and will run for 3 years. The project is aimed at achieving a breakthrough in our understanding of collisionless shocks on the basis of comprehensive data analysis. SHARP project is consolidating efforts of the world-leading experts in Europe (Finnish Meteorological Institute, Finland; Swedish Institute of Space Physics, Sweden; Universiteit van Amsterdam, Netherlands), Israel (Ben-Gurion University of the Negev) and USA (University Of California, Los Angeles). The project will result in a set of freely accessible, higher-level data products to aid the identification of events and fast determination of the shock parameters.

Collisionless shocks are one of the most fundamental phenomena in space and one of the most powerful accelerators in the universe. Despite more than half a century of collisionless shock research, our understanding of the processes of the shock energy dissipation into charged particle heating and acceleration remains incomplete.

SHARP will achieve a major leap in the understanding of the structure of collisionless shocks in various environments and of the acceleration processes at all shock scales. This will be done by:

a) intensifying exploitation of the heliospheric data and performing a thorough and comparative analysis of the Earth bow shock, planetary shocks, and interplanetary shocks,

b) establishing a collaboration of world-renown groups to significantly advance knowledge in all aspects of the shock physics,

c) utilizing and combining the knowledge obtained from in situ measurements of heliospheric shocks and remote observations of distant astrophysical shocks, and

d) developing an open-source high-level database of shocks and a centralized source of advanced tools for the purpose of analysing shock structure and dynamics.

Tycho supernova remnant processed from NASA Chandra X-ray observatory data. Provided by J. Vink (University of Amsterdam).

SHARP on Zenodo

Q

NEWS

Search ...

New publication: "Shock Heating of **Directly Transmitted Ions" by Michael**

Gedalin June 24, 2021 - Observations in the heliosphere show that magnetized collisionless shocks are very efficient at ion heating. Ion heating is a nonadiabatic process and the temperature downstream of the shock is not proportional to the upstream temperature. Directly transmitted ions may be responsible for most of the downstream temperature. We determine the gyrophasedependent distribution of directly transmitted ... Continue reading

SHARP Progress meeting February 23, 2021 - The first SHARP Progress meeting took place on 23rd of February, 2021.

Site under construction February 9, 2021 -The SHARP project web page is currently under construction. More information coming soon.

SHARP Kick-off meeting January 8, 2021 -The SHARP Kick-off meeting took place on January 7th and 8th, 2021.

EXTERNAL LINKS

https://sharp.fmi.fi

Identification of shocks (Olshevsky+, 2021)

Olshevsky+, JGR, 2021

https://arxiv.org/abs/1908.05715

MMS shock database

- Currently we have >3000 shocks in the database (2015-2020)
- Mixture of geometries
- Interesting shocks with high Mach numbers
- We are currently working on checking the entries and validating the parameters (also removing false events)
- Currently we use OMNI to calculate Mach number and geometry but we are looking into using the local MMS measurements and introducing quality flags/indicators

11:19:00

2015-10-07 UTC

11:19:30

IRF

(a)

(b)

(c)

(d)

> log ₁₀ F_i [s m⁻⁴]

> > S S

0

-2

DEF

log 10B²

E²

Ellipticity

11:20:00

-4

5 4 7 log₁₀E (mV/m)²

ΈH

 nT^2

11:18:30

Interface

Shock database selection

Build your shock database. To receive all available data, click 'Submit' without selecting anything. To limit and specialise your database, select any spacecraft or mission, and/or adjust any parameter range, before clicking 'Submit'.

Observing spacecraft(s):

 MMS 1
 MMS 2
 MMS 4
 Select all MMS

 Cluster 1
 Cluster 2
 Cluster 3
 Cluster 4
 Cluster 4

 THEMIS A
 THEMIS B
 THEMIS C
 THEMIS C
 THEMIS C

 Clear all
 (If all spacecraft and mission boxes are left empty, then everything will be included.)

Shock type: Dow shocks Interplanetary shocks (If left empty, all will be included.)

Data mode: Durst Fast (If left empty, all will be included.)

Adjust one or more parameter ranges:

(The pre-filled default values correspond to the lowest and highest values in the current database.)

Date / time range27/01/200300:0016/12/201223:59Separation between observations of same constellationminmeanmax20km77626 V_{us} Plasma velocity magnitude upstream of the shock270km/s9306 B_{us} Magnetic field magnitude upstream of the shock1cnT556 B_{us} Ion density upstream of the shock0ccm ³ 1536 θ_{bm} Angle between the shock normal and upstream magnetic field23cdeg905 R_{cn} Density compression ratio $B_{ds}//B_{ds}/B_{ds}$ 1c1116 R_{cn} Magnetic field overshoot ($B_m \cdot B_{ds}/B_{ds}$)0c1c16 M_{ms} Shock Aftvén Mach number0061c1c16 I_{rf} Spatial length of the shock foot00km1c<			Lower limit			Upper limit	Upper limit	
Separation between observations of same constellationmean120km17/162 V_{us} Plasma velocity magnitude upstream of the shock270km/smm/s930colspan="2">3 B_{us} Magnetic field magnitude upstream of the shock10nT55colspan="2">55 B_{us} Ind meaning upstream of the shock000cm^3153cell n_{us} Ind meaning upstream of the shock0000000 B_{us} Ind meaning upstream of the shock00000000 B_{us} Ind meaning upstream of the shock000		Date / time range	27/01/2003	00:00		16/12/2012	23:59	
V_{us} Plasma velocity magnitude upstream of the shock270 \circ km/s930 \circ B_{us} Magnetic field magnitude upstream of the shock1 \circ nT 55 s n_{us} Ion density upstream of the shock \circ \circ \circ nT 55 s n_{us} Ion density upstream of the shock \circ \circ \circ nT 55 s θ_{ms} Ion density upstream of the shock \circ \circ \circ nT s s θ_{ms} Angle between the shock normal and upstream magnetic field 23 \circ deg 90 s R_{cB} Magnetic compression ratio Id_{dr}/u_{s} 1 \circ 1 \circ 1 \circ R_{cB} Magnetic field overshoot $(B_m, B_{dr})(B_{ds})$ 0 \circ 24 24 s M_{ms} Shock Alfvén Mach number \circ \circ \circ 27 \circ M_{ms} Shock front speed \circ \circ km/s 191 \circ L_{f} Spatial length of the shock foot \circ \circ km \circ s L_{rs} Spatial scale of the overshoot \circ \circ km \circ s		Separation between observations of same constellation \odot min \odot mean \textcircled{o} max	120	0	km	17162		0
B_{us} Magnetic field magnitude upstream of the shock 1 0 nT 55 55 n_{us} Ion density upstream of the shock 0 0 0 cm ⁻³ 153 55 55 θ_{us} Angle between the shock normal and upstream magnetic field 23 0 deg 90 66 R_{cB} Magnetic compression ratio lB_{ds}/lB_{us}^{-1} 1 0 1 0 1 0 1 0	V_{us}	Plasma velocity magnitude upstream of the shock	270	0	km/s	930		0
n_{us} Ion density upstream of the shock00cm^{-3}15315	B_{us}	Magnetic field magnitude upstream of the shock	1	¢	nT	55		
θ_{bn} Angle between the shock normal and upstream magnetic field23cdeg90a R_{cB} Magnetic compression ratio $ B_{dd}/ B_{ud} $ 10110 R_{cn} Density compression ratio n_{dd}/n_{us} 1010 R_{os} Magnetic field overshoot $(B_m - B_{ds}) B_{ds}$ 002.40 M_{ms} Shock Alfvén Mach number0000 V_{sh} Shock front speed0000 L_{f} Spatial length of the shock front0000 L_{rs} Spatial scale of the overshoot0000	n _{us}	Ion density upstream of the shock	0	0	cm ⁻³	153		0
R_{cB} Magnetic compression ratio $ B_{ds} / B_{us} $ 1 1	θ_{bn}	Angle between the shock normal and upstream magnetic field	23	0	deg	90		
R_{cn} Density compression ratio n_{ds}/n_{us} 1 1	R_{cB}	Magnetic compression ratio $ B_{ds} / B_{us} $	1	0		11		0
R_{os} Magnetic field overshoot $(B_m \cdot B_{ds})/B_{ds}$ 0 2.4 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6	R_{cn}	Density compression ratio n_{ds}/n_{us}	1	0		1		0
	R_{os}	Magnetic field overshoot $(B_m - B_{ds})/B_{ds}$	0	0		2.4		0
	M_A	Shock Alfvén Mach number	0	¢		27		1
V_{sh} Shock front speed0 km/s 191191 L_f Spatial length of the shock foot0 km 10 L_r Spatial scale of the shock ramp0 km 10 L_{os} Spatial scale of the overshoot0 km 10	M_{ms}	Shock magnetosonic Mach number	0	Ö				0
L_f Spatial length of the shock foot0km2 L_r Spatial scale of the shock ramp0km2 L_{os} Spatial scale of the overshoot0km2	V_{sh}	Shock front speed	0	0	km/s	191		0
L_r Spatial scale of the shock ramp 0 km L_{os} Spatial scale of the overshoot 0 km	L_{f}	Spatial length of the shock foot	0	0	km			0
L_{os} Spatial scale of the overshoot 0 \circ km \circ	L_r	Spatial scale of the shock ramp	0	0	km			10
	L_{os}	Spatial scale of the overshoot	0	0	km			0

km

km/s nT cm⁻³

deg

km/s km km

km

Include quicklook plots with your database

Submit

- The database will have an online interface
 - You will be able to download the entire database or **select subsets matching your criteria**
- Left shows a very preliminary example of the interface
- IP shocks from THEMIS will also be part of the database
- Output will be the database and quick-looks